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Abstract

This paper presents a general framework for obtaining analytic solutions for ®nite elastic isotropic solid cylinders
subjected to arbitrary surface load. The method of solution uses the displacement function approach to uncouple

the equations of equilibrium. The most general solution forms for the two displacement functions for solid cylinders
are proposed in terms of in®nite series, with z- and y-dependencies in terms of trigonometric and hyperbolic
functions, and with r-dependency in terms of Bessel and modi®ed Bessel functions of the ®rst kind of fractional

order. All possible combinations of odd and even dependencies of y and z are included; and the curved boundary
loads are expanded into double Fourier Series expansion, while the end boundary loads are expanded into Fourier±
Bessel expansion. It is showed analytically that only one set of the end boundary conditions needs to be satis®ed. A

system of simultaneous equations for the unknown constants is given independent of the type of the boundary
loads. This new approach provides the most general theory for the stress analysis of elastic isotropic solid circular
cylinders of ®nite length. Application of the present solution to the stress analysis for the double-punch test is
presented in Part II of this study. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid circular cylinders are the most commonly used specimens in various standard tests in

engineering application, such as the uniaxial compressive strength test, the triaxial compressive strength

test, the Brazilian test, the double-punch test, the block punch index test and the point load strength
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test. In fact, the stress analysis of elastic solid circular cylinders is one of the most fundamental
problems in theoretical elasticity and has a rich history in solid mechanics.

Pochhammer (1876) appears to be the ®rst to propose a general analytic solution for an in®nite
circular cylinder subjected to arbitrary surface loads, the same solution was also derived independently
by Chree (1889). A typical example of axisymmetric problems for in®nite cylinders is the problem of
applying band pressure on the curved surface (Timoshenko and Goodier, 1982; Williams, 1996). If the
cylinder is semi-in®nite in length, the problem has been considered by Horvay and Mirabal (1958).

For ®nite-solid circular cylinders subjected to arbitrary loads, Dougall (1914) employed three
displacement functions and proposed an approximate approach for the stress analysis. Chree (1889) also
included a discussion on the stress analysis of a ®nite cylinder under surface traction in the last section
of his pioneering work, but only some restrictive types of surface traction are discussed. For
axisymmetric deformations of ®nite cylinders, Filon (1902) presented an analytic approach for the stress
analysis, and provided the ®rst analytic solution considering the e�ect of friction between the loading
platens and the end surfaces of a solid cylinder on the non-uniform stress distribution within the
cylinder under compression. Employing Love (1944) stress function, Saito (1952, 1954) also proposed a
general solution form for axisymmetric stress analysis, in terms of Bessel and modi®ed Bessel functions
of the ®rst kind of zero and ®rst orders for r-dependency, and in terms of trigonometric and hyperbolic
functions in z-dependency. Using a similar solution technique of series expansion, Ogaki and Nakajima
(1983) proposed appropriate forms for two stress functions and analyzed the stress ®eld in a solid
circular cylinder subjected to parabolically distributed loads on the central part of the end surfaces. By
using Saito's (1952) approach, Watanabe (1996) derived an analytic solution for axisymmetric ®nite
cylinders under the uniaxial and con®ned compression tests, in which the radial displacement at the ends
is partially constrained. Actually, the problem of compression test on solid ®nite cylinders with end
friction has been the subject of a number of theoretical studies (e.g. Kimura, 1931; Pickett, 1944;
Edelman, 1948; Balla, 1960a, 1960b; Brady, 1971; Peng, 1971; Al-Chalabi and Huang, 1974; Al-Chalabi
et al., 1974; Chau, 1997, 1998b). This analysis has been found useful in the interpretation of the strength
of rock in uniaxial and triaxial tests (Kotte and Berczes, 1969). For problems with displacements applied
on the end surfaces and with zero traction on the curved surface, Robert and Keer (1987a, 1987b)
considered the stress singularities at the ¯at ends of the cylinder. Wei et al. (1999) used the displacement
function approach and presented an analytic solution for the axial Point Load Strength Test (PLST),
which provides an improvement over the approximation by Wijk (1978). Another type of problems of
®nite solid cylinders that has been solved analytically is the torsion problem. For example, the twisting
of a ®nite cylinder by a pair of identical annular stamps attached to its ends was considered by
Hasegawa (1984), and the twisting of a ®nite solid cylinder with free curved surface and ®xed base by a
rigid die attached to the top surface was considered by Gladwell and Lemczyk (1990). Except for the
studies by Dougall (1914) and Chree (1889), all of these analyses are only restricted to axisymmetric
problems of ®nite elastic cylinders; while Dougall's (1914) approach is of approximate nature and
Chree's (1889) discussion is rather restrictive.

For non-axisymmetric deformations of ®nite solid cylinders, Wijk (1980) derived a simple
approximation for the tensile stress at the center of a cylinder subjected to the diametral PLST, in which
two point forces are diametrically applied on the curved surface of the cylinder. Chau (1998a)
introduced two displacement functions and derived a solution for a ®nite circular cylinder under the
action of two diametral indentors and with constrained shear displacements on the two end surfaces.
This solution, however, is only an approximation for cylinders under the diametral PLST. To model the
actual traction free end boundaries (which is the realistic boundary condition for the PLST), Chau and
Wei (1999) proposed more general solution forms for the two displacement functions such that all
boundary conditions are satis®ed exactly. However, there is no closed-form solution for ®nite elastic
circular cylinders under arbitrary loads on the curved and end surfaces.
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Therefore, this paper, Part I of the present study, presents a general analytic solution for ®nite elastic
isotropic solid cylinders under arbitrary surface load. The method of solution is generalized from those
used by Wei et al. (1999) and Chau and Wei (1999). Complete solution forms for the displacement
functions are introduced here such that any traction problems of ®nite isotropic solid cylinders can be
solved exactly. The tractions on the curved surface are expanded into double Fourier series expansion,
while the tractions on the end surfaces are expanded into Fourier±Bessel series expansion, in order to
match the internal stress ®eld resulting from the general solution forms of the displacement functions.
The solutions by Filon (1902), Saito (1952, 1954), Watanabe (1996), Chau (1998a), Chau and Wei
(1999) and Wei et al. (1999) can be considered as special cases of the present solution; that is, they can
be re-derived independently using the present uni®ed approach. Part II of this study will apply the
present solution to the stress analysis of solid cylinders subjected to the double-punch test (Wei and
Chau, 1999).

2. Governing equations

Consider a homogeneous and isotropic elastic cylinder of radius R (or diameter D ) and length 2L in a
cylindrical co-ordinate system as shown in Fig. 1. The stress and strain tensors are related by the
following Hook's law

sab � 2Geab � leggdab �1�
where a, b, g � r, y, z; G and l are the Lame constants (G is normally referred as the shear modulus);
and repeated indices in Eq. (1) imply summation. The Cauchy stress and strain tensors are denoted by sss

Fig. 1. A sketch of a ®nite solid circular cylinder of length 2L and radius R subjected to arbitrary tractions on the curved and end

surfaces.
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and eee, respectively. The strain tensor is related to the displacement �u�urer�uyey�uzez� by
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In terms of cylindrical coordinates, the physical components of the strain tensor given in Eq. (2) are
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In the absence of body force, the equations of equilibrium, r � sss � 0, in terms of displacements are (e.g.,
Malvern, 1969):
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where OOO���ru�Tÿru�=2 and e � r � u are the spin tensor and the volumetric strain, respectively.
When the cylinder is subjected to arbitrary traction on its surface, the general boundary conditions

are

srr � f1r�z, y�, srz � f1z�z, y�, sry � f1y�z, y� on r � R �8�

szr � f2r�r, y�, szz � f2z�r, y�, szy � f2y�r, y� on z � �L �9�

szr � f3r�r, y�, szz � f3z�r, y�, szy � f3y�r, y� on z � ÿL �10�

where fij �i � 1, 2, 3; j � r, z, y� are the prescribed tractions on the curved surface and on the end
surfaces of the cylinder. The ®rst subscript i � 1, 2, 3 indicates the curved, top and bottom end surfaces,
respectively; the second subscript j �� r, y, z� indicates the direction along which the traction acts. To
simplify the later discussion, these boundary conditions are called BCij �i, j � 1, 2, 3� as de®ned in
Table 1. For example, the ®rst part of Eq. (8) is denoted by BC11.
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3. Method of solution

The main objective of this paper is to obtain the exact solution satisfying both the equations of
equilibrium (5)±(7) and the boundary conditions (8)±(10). Similar to the analyses by Chau (1998a,
1998b) and Chau and Wei (1999), two displacement functions F and C are introduced
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Substitution of Eq. (11) into Eqs. (5)±(7) yields two uncoupled governing equations for the displacement
functions F and C:

r4F � r 2r 2F � 0, r 2C � 0 �13�
where r 2 is the Laplacian operator, or r 2�r1� @ 2=@z2: That is, F and C satisfy the biharmonic and
harmonic equations, respectively.

In terms of these two displacement functions, the physical components of the stress tensor can be
obtained by substituting Eq. (11) into Eqs. (4) and (1) as,
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Table 1

The de®nitions for boundary conditions BCij �i, j � 1, 2, 3)

Surface Direction

1 (r ) 2 (z ) 3 �y)

1 �r � R� srr � f1r srz � f1z sry � f1y
2 �z � L� szr � f2r szz � f2z szy � f2y
3 �z � ÿL� szr � f3r szz � f3z szy � f3y
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4. Series expressions for the two displacement functions

The most di�cult step to solve the problem is to ®nd the appropriate and complete solution forms for
the two displacement potentials F and C, which should satisfy both of the governing equations given in
Eq. (13), and the boundary conditions (8)±(10) for any arbitrary applied tractions fij:

The method of separation of variables is employed here to solve Eq. (13). In particular, we assume
the series solution for C as

C�r, z, y� �
X1
n�0

�
c1�r, z�cos�ony� � c2�r, z�sin�ony�

� �20�

where on is de®ned as on � 2np=T, T is the periodicity of C in y, which should match the periodicity of
the external applied traction in y: Substitution of Eq. (20) into Eq. (13) leads to the governing equation
for function ci�r, z�, i � 1, 2,
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The general solution of Eq. (21) is

ci�r, z� �
�
AIon �Zr� � BKon �Zr�

� sin�Zz�
cos�Zz� �

�
CJon�gr� �DYon �gr�

� sinh�gz�
cosh�gz� �22�

where Jon
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�Zr� and Kon

�Zr� are Bessel functions and modi®ed Bessel functions of the ®rst
and second kinds with fractional order on: Parameters A, B, C, D, Z and g are constants to be
determined. Because the stress ®eld at the center of the ®nite solid cylinder must be ®nite, all terms that
relate to Yon

�gr� and Kon
�Zr� must be discarded. Consequently, the general expression for C is assumed

as:

C � ÿ 1

2G

(
E00r

on �
X1
n�0

(
E
�l�
0nr

on �
X1
m�1

E �k�mn

Z2
m

Ion �Zmr�
cos�Zmz�
sin�Zmz� �

X1
s�1

F �k�sn

g2s
Jon �gsr�

cosh�gsz�
sinh�gsz�

)
sin�ony�
cos�ony�

)
�23�

where G is the shear modulus, Zm � mp=L, gs � ls=R, ls is the sth root of J 0on
�x� � 0: The characteristics

of ls will be discussed in later section. E00E
�l �
0n , E �k�mn and F �k�sn �l � 1, 2; k � 1, 2, 3, 4� are unknown

constants to be determined by the boundary conditions. The superscript l range from 1 to 2 since the y-
dependency can be either sin or cos; and for general cases, we should include both l � 1 and 2. For the
superscript k, we can have four combinations for the z- and y-dependencies; and in general all four
combinations are needed for the most general case of applied traction. The corresponding z- and y-
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dependencies attached to the unknown constants for each k and l are tabulated in Table 2. The
summation for m in Eq. (23) can be used to ®t any z-dependency of applied traction on the curved
surface while the summation for s can take care of any r-dependency of applied traction on the end
surfaces. Note that the term ci�r, z� � Eron is resulted by considering the special case of Zm � 0; and
that the term for E00 will lead to constant shear stress ®eld for srz only.

To ®nd the general solution for F, we let r 2F � �C and note that the general solution for �C is the
same as those for C given in Eq. (22). By back substitution of this solution into r 2F � �C and by
careful inspection, the following general solution for F is obtained:
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where A00, C00, A
�l �
0n , A�k�mn, B �k�mn, C �k�sn D�k�sn �l � 1, 2; k � 1, 2, 3, 4� are unknown coe�cients to be

determined by the boundary conditions. Each combination of l and k corresponds to a particular
combination of the upper and lower functions of z and y given in Eq. (24). More speci®cally, the
corresponding z- and y-dependencies attaching to the unknown constants for each k and l are given in
Table 2; and in general, all combinations of k and l are needed for general loading cases. Note that the
choices for l given in Table 2 will lead to srr�r, z, y� being an even function in y [i.e. cos�ony�� if l � 1
and being an odd function [i.e. sin�ony�� if l � 2: In addition, the z-dependency/y-dependency for
srr�r, z, y� will be even/even, even/odd, odd/even and odd/odd for k � 1, 2, 3, 4, respectively. Note that

Table 2

The y- and z-dependencies for superscripts l �� 1, 2� and k �� 1, 2, 3, 4� used for the displacement functions C and F given in Eqs.

(23) and (24)

Constants for C and F Superscripts l/k y-dependency z-dependency
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the constants A00 and C00 will only lead to constant normal stresses. In addition, it is straightforward to
show that Eqs. (23) and (24) satisfy the governing equations given in Eq. (13) identically.

5. General expressions for stresses

Substitution of Eqs. (23) and (24) into Eqs. (14)±(19) leads to the following general expressions for
the stress components:
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For the sake of completeness, the proper choice for the upper and lower functions in z and y
corresponding to each value of k �� 1, 2, 3, 4� and l �� 1, 2� is shown in Table 3. It should be
emphasized again that all terms of k and l are needed in general.

6. Determination of unknown coe�cients

By using double Fourier expansion technique, all boundary tractions acting on the curved surface of
the cylinder given in Eq. (8) can be expressed as (Brown and Churchill, 1993):

sra �
X1
m�0

X1
n�0

n
lmn

h
a�a�mncos�Zmz�cos�ony� � b�a�mnsin�Zmz�cos�ony� � c�a�mncos�Zmz�sin�ony�

� d �a�mnsin�Zmz�sin�ony�
io

�31�

Table 3

The y- and z-dependencies in Eqs. (25)±(30) used for the stresses for superscripts l �� 1, 2� and k �� 1, 2, 3, 4�a

l/k Dependency srr srz sry szz szy

l � 1 y E1 E1 O1 E1 O1

l � 2 y O1 O1 E1 O1 E1

k � 1 y E1 E1 O1 E1 O1

z E2 O2 E2 E2 O2

k � 2 y O1 O1 E1 O1 E1

z E2 O2 E2 E2 O2

k � 3 y E1 E1 O1 E1 O1

z O2 E2 O2 O2 E2

k � 4 y O1 O1 E1 O1 E1

z O2 E2 O2 O2 E2

a Symbols: E1 = cos, E2 = cos, cosh, zsinh, O1 = sin, O2 = sin, sinh, zcosh.
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where a � r, z, y, and

lmn �
8<: 1=4 for m � n � 0
1=2 for n � 0, m > 0 or m � 0, n > 0
1 for m > 0, n > 0
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In order to match our general expressions of the stress ®eld with the applied stress given in Eq. (31) on
the curved boundary (corresponding to BC11, BC12, and BC13), we ®rst substitute r � R into Eqs. (25),
(28) and (30), then expand all functions of z in terms of Fourier sine and cosine series. Finally, the shear
and normal stresses on the curved boundary can be expressed as:
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where l � 1, 2: In Eqs. (35)±(37), G�i �sm �i � 1, 2� are the coe�cients for the Fourier expansion of cosh�gsz�
and sinh�gsz�, respectively:
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While L�i �sm �i � 1, 2� are the coe�cients for the Fourier expansion of gsz sinh�gsz� and gsz cosh�gsz�,
respectively:
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Equating coe�cients of the Fourier expansions in z and y in Eqs. (35)±(37) to those corresponding to
BC11, BC12 and BC13 given by Eq. (31), we obtain a system of equations relating the unknown
constants.

In particular, the following equations are obtained by BC11:
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where aik �i � 1, 2; k � 1, 2, 3, 4� and O�r�mn are de®ned in Table 4.
The following equations are obtained by BC12:
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where bik �i � 1, 2; k � 1, 2, 3, 4� and O�z�mn are de®ned in Table 5.
The following equations are obtained by BC13:
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Table 4

The de®nitions of aik �i � 1, 2,� and O�r�mn used in Eq. (50) for k � 1, 2, 3, and 4

k a1k a2k O�r�mn

1 +1 ÿ1 a�r�mn

2 +1 +1 c�r�mn

3 ÿ1 ÿ1 b�r�mn

4 ÿ1 +1 d �r�mn
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where kik �i � 1, 2; k � 1, 2, 3, 4� and O�y�mn are de®ned in Table 6.
On the end surface, z � L, Eq. (9) can be rewritten as
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On the other end surface z � ÿL, Eq. (10) is rewritten as

Table 5

The de®nitions of bik �i � 1, 2� and O�z�mn used in Eq. (52) for k � 1, 2, 3, and 4

k b1k b2k O�z�mn

1 +1 ÿ1 b�z�mn

2 ÿ1 +1 d �z�mn

3 ÿ1 ÿ1 a�z�mn

4 +1 +1 c�z�mn

Table 6

The de®nitions of kik �i � 1, 2� and O�y�mn used in Eq. (55) for k � 1, 2, 3, and 4

k k1k k2k O�y�mn

1 +1 +1 c�y�mn

2 ÿ1 ÿ1 a�y�mn

3 ÿ1 +1 d �y�mn

4 +1 ÿ1 b�y�mn
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eÿsn, f
ÿ
sn, g

ÿ
sn, h

ÿ
sn, k

ÿ
sn and l ÿsn can be obtained by replacing superscript `+' by `ÿ' and `f2a' by `f3a' �a �

r, z, y� in Eqs. (63)±(68).
It can be shown that once one end boundary (say z � L� is satis®ed, the other end boundary will be

satis®ed automatically. To see this, let us consider szz as an example and rewrite Eqs. (57) and (60) as
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on z � L and z � ÿL, respectively.
Comparing Eqs. (69) and (70), we found that the term inside the ®rst bracket [ ] in Eqs. (69) and (70)

is an even function with respect to z, while the terms inside the second bracket [ ] is an odd function
with respect to z. Similar consideration can also be made to szy and szr:

To consider BC21, BC22, and BC23, the internal stress ®eld given in Eqs. (27)±(29) is ®rst expanded
into Fourier±Bessel series
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C �k�pn � 2nD�k�pn

� sinh�gpz�
cosh�gpz�

�D�k�pn gpz
cosh�gpz�
sinh�gpz�

�
cos�ony�
sin�ony�

9=;Jon�gsr�
r

�72�
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szy �
X1
n�0

X1
s�1

8<:X1
m�1

((
onA

�k�
mn

Zm

��2ÿ 2nÿ on�Tsm �Usm

�� onB
�k�
mn

Zm
Tsm

)
sin�Zmz�
cos�Zmz�

ÿsin�ony�
cos�ony�

� E �k�mn

2Zm
�Usm ÿ onTsm � ÿsin�Zmz�

cos�Zmz�
sin�ony�
cos�ony�

)
ÿ on

gs

��
C
�k�
sn � 2nD�k�sn

�
sinh�gsz�
cosh�gsz�

�D�k�sn gsz
cosh�gsz�
sinh�gsz�

�ÿsin�ony�
cos�ony� �

X1
p�1

F �k�pn Vsn

2gp

sinh�gpz�
cosh�gpz�

sin�ony�
cos�ony�

9=;Jon�gsr�
r

�73�

where

Tsm � 2l2
s�

l2
s ÿ o2

n

�h
�ZmR� 2�l2

s

i
J 2
on
�ls �

�
ZmRIon�1�ZmR�Jon

�ls � � lsIon �ZmR�Jon�1�ls �
� �74�

Usm � 2l2
s ZmR�

l2
s ÿ o2

n

�h
�ZmR�2�l2

s

i
J 2

on
�ls �

(
2�on ÿ 1�ZmR
�ZmR�2�l2

s

�
ZmRIon�1�ZmR�Jon

�ls �

� lsIon �ZmR�Jon�1�ls �
�� 2onls
�ZmR�2�l2

s

�
ZmRIon �ZmR�Jonÿ1�ls � � lsIonÿ1�ZmR�Jon

�ls �
�

� ZmRIon �ZmR�Jon
�ls � ÿ lsIonÿ1�ZmR�Jonÿ1�ls �

)
�75�

Wsm � 2l2
s Z

2
mR

2�
l2
s ÿ o2

n

�h
�ZmR� 2�l2

s

i
J 2

on
�ls �

8<:ZmRIon�1�ZmR�Jon
�ls � � lsIon�ZmR�Jon�1�ls �

� 2

�ZmR�2�l2
s

8<:2�n� 1�
�
l2
s ÿ Z2

mR
2
�

�ZmR� 2�l2
s

�
ZmRIon�1�ZmR�Jon

�ls � � lsIon �ZmR�Jon�1�ls �
�

� 4nZmRls
�ZmR�2�l2

s

�
ZmRIon�2�ZmR�Jon�1�ls � � lsIon�1�ZmR�Jon�2�ls �

�

� lsZmRIon�1�ZmR�Jon�1�ls � ÿ
�
l2
s ÿ Z2

mR
2
�
Ion �ZmR�Jon

�ls �

9=;
9=; �76�

If lp 6�ls, then
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Vsn � 2l2
s�

l2
s ÿ o2

n

��
l2
p ÿ l2

s

�
J 2
on
�ls �

8<:l2
p Jon

ÿ
lp
�
Jon
�ls � � lslpJonÿ1

ÿ
lp
�
Jonÿ1�ls �

ÿ 2lplson

l2
p ÿ l2

s

�
lpJon

ÿ
lp
�
Jonÿ1�ls � ÿ lsJonÿ1

ÿ
lp
�
Jon
�ls �

�

�
on

�
l2
p � l2

s

�
ÿ 2l2

p

l2
p ÿ l2

s

�
lpJon�1

ÿ
lp
�
Jon
�ls � ÿ lsJon

ÿ
lp
�
Jon�1 �ls �

�9=; �77�

If lp � ls, then

Vsn � l2
s Jonÿ1�ls �Jon�1�ls ��
l2
s ÿ o2

n

�
J 2
on
�ls �

�78�

The proofs of these formulas are given in Appendix A. By substituting z � L into Eq. (71) and
comparing with the corresponding coe�cients of Eq. (69), we have

2�2ÿ n�C00 � �1ÿ n�A00 � 0 �79�

X1
m�1

n
A�1�mn

��4ÿ 2nÿ on�Tsm �Usm

�� B �1�mnTsm

o
� ÿ 1�m

ÿ
h�

C �1�sn � �2nÿ 1�D�1�sn

�
cosh�gsL� �D�1�sn gsL sinh�gsL�

i
� 1

2
zsn
ÿ
h�sn � hÿsn

� �80�

X1
m�1

n
A�2�mn

��4ÿ 2nÿ on�Tsm �Usm

�� B �2�mnTsm

o
� ÿ 1�mÿ

h�
C �2�sn � �2nÿ 1�D�2�sn

�
cosh�gsL�

�D�2�sn gsL sinh�gsL�
i

� 1

2
zsn
ÿ
g�sn � gÿsn

� �81�

�
C �3�sn � �2nÿ 1�D�3�sn

�
sinh�gsL� �D�3�sn gsL cosh�gsL� �

1

2
zsn
ÿ
h�sn ÿ hÿsn

� �82�

�
C �4�sn � �2nÿ 1�D�4�sn

�
sinh�gsL� �D�4�sn gsL cosh�gsL� �

1

2
zsn
ÿ
g�sn ÿ gÿsn

� �83�

The same system of equation is obtained if we substitute z � ÿL into Eq. (71) and comparing the
corresponding coe�cients of Eq. (70). Thus, only one of the end boundaries (either BC22 or BC32) has
to be satis®ed by the stress szz given in Eq. (71). Similar consideration can also be made for szy and szr
and leads to the same conclusion.

Applying BC21 or BC31 into Eq. (72), we have
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F �1�sn on

2gs
sinh

ÿ
gpL

�ÿX1
p�1

Vpn

gp

h�
C �1�pn � 2nD�1�pn

�
sinh

ÿ
gpL

��D�1�pn gpL cosh
ÿ
gpL

�i � 1

2
zsn
ÿ
f �sn � f ÿsn

� �84�

ÿF
�2�
sn on

2gs
sinh

ÿ
gpL

�ÿX1
p�1

Vpn

gp

h�
C �2�pn � 2nD�2�pn

�
sinh

ÿ
gpL

��D�2�pn gpL cosh
ÿ
gpL

�i � 1

2
zsn
ÿ
e�sn � eÿsn

� �85�

X1
m�1

((
A�3�mn

Zm

�ÿ
o2

n ÿ 2on�1ÿ n��Tsm �Usm �Wsm

�� B �3�mn

Zm
�Usm ÿ onTsm �

)
ÿ E �3�mnon

2Zm
Tsm

)

� � ÿ 1�m�F
�3�
sn on

2gs
cosh�gsL� ÿ

X1
p�1

Vsn

gp

h�
C �3�pn � 2nD�3�pn

�
cosh

ÿ
gpL

��D�3�pn gpL sinh
ÿ
gpL

�i
� 1

2
z
ÿ
f �sn ÿ f ÿsn

� �86�

X1
m�1

((
A�4�mn

Zm

�ÿ
o2

n ÿ 2on�1ÿ n��Tsm �Usm �Wsm

�� B �4�mn

Zm
�Usm ÿ onTsm �

)
� E �4�mnon

2Zm
Tsm

)

� � ÿ 1�mÿF
�4�
sn on

2gs
cosh�gsL� ÿ

X1
p�1

Vsn

gp

h�
C �4�pn � 2nD�4�pn

�
cosh

ÿ
gpL

��D�4�pn gpL sinh
ÿ
gpL

�i
� 1

2
z
ÿ
e�sn ÿ eÿsn

� �87�

Finally, applying BC23 or BC33 into Eq. (73), we have

on

gs

h�
C �1�sn � 2nD�1�sn

�
sinh�gsL� �D�1�sn gsL cosh�gsL�

i
�
X1
p�1

F �1�pn Vsn

2gp
sinh

ÿ
gpL

� � 1

2
zsn
ÿ
k�sn � kÿsn

� �88�

ÿon

gs

h�
C �2�sn � 2nD�2�sn

�
sinh�gsL� �D�2�sn gsL cosh�gsL�

i
�
X1
p�1

F �2�pn Vsn

2gp
sinh

ÿ
gpL

� � 1

2
zsn
ÿ
l�sn � l ÿsn

� �89�

X1
m�1

(
ÿ
(
onA

�3�
mn

Zm

��2ÿ 2nÿ on�Tsm �Usm

�� onB
�3�
mn

Zm
Tsm

)
� E �3�mn

2Zm
�Usm ÿ onTsm �

)
� ÿ 1�m

� on

gs

h�
C �3�sn � 2nD�3�sn

�
cosh�gsL� �D�3�sn gsL sinh�gsL�

i
�
X1
p�1

F �3�pn Vsn

2gp
cosh�gsz�

� 1

2
z
ÿ
k�sn ÿ kÿsn

� �90�
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X1
m�1

((
onA

�4�
mn

Zm

��2ÿ 2nÿ on�Tsm �Usm

�� onB
�4�
mn

Zm
Tsm

)
� E �4�mn

2Zm
�Usm ÿ onTsm �

)
� ÿ 1�m

ÿ on

gs

h�
C �4�sn � 2nD�4�sn

�
cosh�gsL� �D�4�sn gsL sinh�gsL�

i
�
X1
p�1

F �4�pn Vsn

2gp
cosh�gsz�

� 1

2
z
ÿ
l�sn ÿ l ÿsn

� �91�

Therefore, A00 and C00 can be obtained from Eqs. (47) and (79); E00 can be obtained from Eq. (51); A
�l �
0n

and E
�l �
0n �l � 1, 2� can be obtained from Eqs. (48), (49), (53) and (54); for each n, 12�M� S � unknown

constants A�k�mn, B �k�mn, E �k�mn, C �k�sn , D�k�sn , and F �k�sn �k � 1, 2, 3, 4; m � 1, 2, . . . ,M; s � 1, 2, . . . ,S� can be
solved from the system of equations forming from Eqs. (50), (52) and (55) with m from 1 to M, and
Eqs. (80)±(91) with s from 1 to S. Thus, we have exactly 12�M� S � equations for 12�M� S � unknowns
A�k�mn, B

�k�
mn, E

�k�
mn, C

�k�
sn , D

�k�
sn , and F �k�sn for each n. If the summation n is from 1 to N, the total number of

unknowns and equations are 3� 4N� 12N�M� S �: Finally, all stress components can be obtained by
back substituting all these coe�cients into Eqs. (25)±(30). Therefore, the general elastic solution for
stresses within a ®nite isotropic solid cylinder subjected to arbitrary surface loads is obtained, and some
special cases of this general solution will be discussed next.

7. Special cases

Let us consider some special loading cases of our general solution given in the previous section. When
we set on � 2n �n � 1, 2, . . .� and k � l � 1, our general solution reduces to the solution for ®nite
cylinders under the diametral Point Load Strength Test (PLST) considered by Chau and Wei (1999);
when we set on � 2n �n � 1, 2, . . .�, k � l � 1, and C �1�sn � D�1�sn � F �1�sn � 0, our general solution reduces
to the solution for ®nite cylinders with zero shear displacements on the end surfaces under the diametral
PLST considered by Chau (1998a, 1998b); when we set on � 0, k � l � 1, and E �1�mn � F �1�sn � 0, our
general solution reduces to the solution for ®nite cylinders under the axial PLST considered by Wei et
al. (1999); and, when we set on � 0 and E �1�mn � F �1�sn � 0, our general solution reduces to the general
solution for ®nite cylinders under axisymmetric load by Saito (1954, 1952). In addition, the solutions for
®nite cylinders with fully or partially constrained radial displacement at the end surfaces under con®ned
or uncon®ned compression tests considered by Filon (1902) and Watanabe (1996) can also be obtained
by simply replacing the corresponding traction boundary with the displacement boundary.

8. Characteristics of the roots of J 0on
�ls� � 0

When on � 0 (or cylinders under axisymmetric loads), Saito (1952) has considered the roots of
J 00�ls� � 0 in obtaining his numerical solution. These roots have also been used by various authors,
including Ogaki and Nakajima (1983), Watanabe (1996) and Wei et al. (1999).

For obtaining the analytic solution for the diametral PLST test, Chau and Wei (1999) has evaluated
the roots of J 02n�ls� � 0 �n � 0, 1, 2, . . .�: Since the accuracy of the present approach also depends on the
accuracy of the roots ls, in this section we will consider some general characteristics of the roots of
J 0on
�ls� � 0, so that these roots can be found accurately and e�ciently.
In particular, the following four regularities are observed for the roots of �ls� � 0:

1. The upper and lower bounds for the ®rst root
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As discussed by Watson (1944), the smallest root ls of J 02n�x� � 0 can be bounded by����������������������
2n�2n� 2�

p �for 1RnR2�����������������������
2n�2n� 3�

p �for n > 2�
< ls <

����������������������
4n�2n� 1�

p
�92�

The ®rst roots can be searched within these upper and lower bounds. Once we obtain the ®rst root,
we can generate the subsequent roots e�ciently if the following properties are noted.

2. For large ls, any two non-zero neighboring roots ls�1 and ls of �x� � 0 di�er by p
First, the following asymptotic form of Bessel function Jon

�x� is noted (Watson, 1944)

Jon �x� �
�������
2

px

r
cos

�
xÿ onp

2
ÿ p

4

�
�O�x ÿ3=2 � �93�

For large x, we can retain the ®rst-order term, and consider its di�erentiation. Thus, we have

J 0on
�x�1ÿ

�������
2

px

r
sin

�
xÿ onp

2
ÿ p

4

�
�94�

Consequently, the roots of J 0on
�ls� � 0 should satisfy approximately

ls ÿ onp
2
ÿ p

4
� kp, k � 0, 1, 2, . . . �95�

Therefore, the di�erence between any two neighboring roots is given by

ls�1 ÿ ls1p �96�
if ls is large.

3. There must be a root of J 0onÿ1�x� � 0 between any two neighboring roots of J 0on
�x� � 0

To show this property, the following argument is applied. By following the procedure given in
Section 15.22 of Watson (1944), we de®ne a function f �x� � xon�1J 0on

�x�: Suppose that ls and ls�1 are
two neighboring roots of J 0on

�x� � 0, obviously, f �ls� � f �ls�1� � 0: It is well known that there must
exist a value x between ls and ls�1 that satis®es f 0�x� � 0: In addition, it can be proved that
f 0�x� � xon�1J 0onÿ1�x�, so we have J 0onÿ1�x� � 0 for ls < x < ls�1: That is, between any two neighboring
roots ls and ls�1 of J 0on

�x� � 0, we can ®nd a root x for J 0onÿ1�x� � 0:
4. There must be a root of J 0on

�x� � 0 between any two neighboring roots of J 0onÿ1�x� � 0
The proof for this property is similar to those used in the previous characteristic (3). In particular,

we can de®ne a function g�x� � x ÿon � 1J 0on
ÿ 1�x�, and follow the same procedure employed for the

proof of (3). Because the proof follows trivially, the details will not be given here.

By noting these four regularities, the roots of J 0on
�x� � 0 can be evaluated e�ciently.

9. Conclusion

In this paper, we have presented a general solution for a ®nite isotropic solid circular cylinder
subjected to arbitrary boundary loads. Equations of equilibrium are ®rst converted to two uncoupled
di�erential equations by using the displacement function approach. Appropriate solution forms of these
displacement functions are proposed in terms of series expression involving Bessel and modi®ed Bessel
functions in r-dependency, trigonometric and hyperbolic functions in z-dependency, and trigonometric
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functions in y-dependency. The boundary tractions on the curved surface are expanded into double
Fourier series expansion, while those on the end surfaces are expanded into Fourier±Bessel series
expansion. System of simultaneous equations for the unknown constants of the displacement functions
is given explicitly for any arbitrary boundary loads. It was demonstrated that only one of the end
boundary conditions need to be satis®ed, while the other end boundary will be satis®ed automatically.
Solution for axisymmetric problems given by Saito (1952, 1954) for ®nite solid cylinders, and solutions
for the axial and diametral Point Load Strength Test (PLST) given by Wei et al. (1999) and Chau and
Wei (1999) can be recovered as special cases of the present general solution. Part II of this study will
specialize the present solution to the stress analysis for the double-punch test (Wei and Chau, 1999).
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Appendix A

In order to apply the end boundary condition, the following r-dependent functions Ion
�Zmr�,

ZmrIonÿ1�Zmr�, Z2
mrIon

�Zmr�, and r
@Jon �gpr�

@ r can be expressed in series of Bessel function Jon
�gsr� as (Watson,

1944):

Ion �Zmr� �
X1
s�1

TmsJon�gsr� �A1�

ZmrIonÿ1�Zmr� �
X1
s�1

UmsJon �gsr� �A2�

Z2
mrIon�Zmr� �

X1
s�1

WmsJon �gsr� �A3�

r
@Jon �g pr�

@r
�
X1
s�1

VsnJon �gsr� �A4�

where

Tms � 2l2
s

R2

�
l2
s ÿ o2

n

�
J 2

on
�ls �

�R
0

rIon�Zmr�Jon�gsr� dr �A5�

Ums � 2l2
s Zm

R 2

�
l2
s ÿ o2

n

�
J 2
on
�ls �

�R
0

r2Ionÿ1�Zmr�Jon�gsr� dr �A6�
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Wms � 2l2
s Z

2
m

R2

�
l2
s ÿ o2

n

�
J 2

on
�ls �

�R
0

r3Ion�Zmr�Jon�gsr� dr �A7�

Vsn � 2l2
s

R2

�
l2
s ÿ o2

n

�
J 2

on
�ls �

�R
0

r2
@Jon�g pr�

@r
Jon �gsr� dr �A8�

To integrate Eq. (A5), we ®rst note the following formulas (Watson, 1944):�R
0

rJon �Zmr�Jon �gsr� dr � ZmRJon�1�ZmR�Jon
�ls � ÿ lsJon �ZmR�Jon�1�ls �
Z2
m ÿ g2s

�A9�

and

Ion �Zmr� � eÿionp=2Jon �iZmr� �A10�

where ls � gsR:
Substitution of Eq. (A10) into Eq. (A9) leads to�R

0

rIon�Zmr�Jon�gsr� dr � ZmRIon�1�ZmR�Jon
�ls � � lsIon �ZmR�Jon�1�ls �
Z2
m � g2s

�A11�

Substitution of Eq. (A11) into (A5) leads to Eq. (74).
We can integrate Eq. (A6) by integration by part, but this procedure is tedious. We propose a simpler

approach here. In particular, we ®rst consider the di�erentiation of the following functions:

d

dr

h
r2Ion �Zmr�Jon �gsr�

i
� 2�1ÿ on�rIon �Zmr�Jon �gsr� � r2

�
ZmIonÿ1�Zmr�Jon�gsr�

� gsIon�Zmr�Jonÿ1�gsr�
� �A12�

and

d

dr

h
r2Ionÿ1�Zmr�Jonÿ1�gsr�

i
� 2onrIonÿ1�Zmr�Jonÿ1�gsr� � r2

�
ZmIon�Zmr�Jonÿ1�gsr� ÿ gsIonÿ1�Zmr�Jon�gsr�

� �A13�

The result given in Eq. (75) can be obtained by virtue of Eq. (A11) together with the equation resulting
from subtracting Eq. (A13)� gs from Eq. (A12)� Zm:

Similarly, for the integration of Eq. (A7) we can consider the di�erentiation of the following
functions:

d

dr

h
r3Ion�Zmr�Jon�1�gsr�

i
� 2r2Ion�Zmr�Jon�1�gsr� � Zmr

3Ion�1�Zmr�Jon�1�gsr� � gsr
3Ion�Zmr�Jon�gsr� �A14�

and
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d

dr

h
r3Ion�1�Zmr�Jon�gsr�

i
� 2r2Ion�1�Zmr�Jon �gsr� ÿ gsr

3Ion�1�Zmr�Jon�1�gsr� � Zmr
3Ion�Zmr�Jon�gsr� �A15�

Integration of the equation resulting from the subtraction of Eq. (A14) � gs from Eq. (A15) � Zm leads
to �R

0

r3Ion �Zmr�Jon �gsr� � R3
�
gsIon �ZmR�Jon�1�ls � � ZmIon�1�ZmR�Jon

�ls �
�

ÿ 2

�R
0

h
gsr

2Ion �Zmr�Jon�1�gsr� � Zmr
2Ion�1�Zmr�Jon�gsr�

i
dr �A16�

The integration on the right side of Eq. (A16) can be obtained by replacing `on' by `on � 1' in Eqs.
(A12) and (A13), and substituting the related terms into Eq. (A16). Finally, Eq. (76) can be obtained by
substituting Eq. (A16) into (A7).

The integration for Eq. (A8) can be obtained by using the following procedure. We ®rst note that:

r
@Jon �gpr�

@r
� gprJonÿ1�gpr� ÿ onJon �gpr� �A17�

then Eq. (A8) can be integrated exactly if we know the integration of r2Jon
ÿ 1�gpr�Jon

�gsr� and
rJon
�gpr�Jon

�gsr�:
When gp 6�gs, the ®rst integration can be obtained by following the similar procedure as getting the

integration in Eq. (A6) simply by replacing the modi®ed Bessel function by the Bessel function. The
second integration can be derived directly from Eq. (A9).

When gp � gs, the integration of rJon
�gpr�Jon

�gsr� is given by Watson (1944)�R
0

rJon �gsr�Jon�gsr� dr �
1

4
R2
�
2Jon
�ls �Jon

�ls � ÿ Jonÿ1�ls �Jon�1�ls � ÿ Jon�1�ls �Jonÿ1�ls �
� �A18�

The integration of r2Jon
ÿ1�gsr�Jon

�gsr� can be obtained by integrating the following equation and using
Eq. (A18):

d

dr

h
r2Jon�gsr�Jon �gsr�

i
� 2rJon �gsr�Jon�gsr� ÿ 2onrJon �gsr�Jon�gsr� � 2gsr

2Jon �gsr�Jonÿ1�gsr� �A19�

This completes the Fourier Bessel expansions given in Eqs. (74)±(78).
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